Требуемые инструменты, приборы, материалы

Для подключения терминала GalileoSky (далее - терминал) к CAN-шине транспортных средств (далее - TC) необходимо иметь:

1. Электромонтажный инструмент.

Рисунок 1

2. Комплект монтажных проводов, соединительный кабель USB, кабель подключения к диагностическому разъему OBD-II.

Рисунок 2

3. Компьютер на базе операционной системы «Windows» с установленной программой конфигурации терминалов – «Конфигуратор» Рекомендуется установить последнюю версию программы с сайта http://7gis.ru/support/konfigurator.html

Рисунок 3

4. Измерительный прибор – мультиметр.

Рисунок 4

Общая информация

Промышленная сеть реального времени CAN представляет собой сеть с общей средой передачи данных и состоит из узлов с собственными тактовыми генераторами, например, приборная панель или подсистема определения температуры в автомобиле (Рис. 5). Любой узел сети CAN посылает сообщение по сети и каждый из узлов системы решает, относится ли к нему это сообщение. Для решения этой задачи в CAN имеется аппаратная реализация фильтрации сообщений. CAN контроллеры соединяются с помощью дифференциальной шины, которая имеет две линии - CAN_H (Can-High) и CAN_L (Can-Low), по которым передаются сигналы.

Рисунок 5. Типовая схема шины CAN

Протокол CAN-шины реализован в двух версиях: версия А задает 11-битную идентификацию сообщений (т. е. в системе может быть 2048 сообщений), версия В — 29-битную (536 млн. сообщений).

Подключение к CAN-шине

На ТС подключение терминала к CAN-шине возможно двумя способами:

1. подключение к диагностическому разъему OBD-II, как правило, присутствующему на большинстве TC. Подключение осуществляется в соответствии со схемой, приведенной на Рисунке 6:

Рисунок 6. Схема подключения терминала к диагностическому разъему

 прямое подключение к CAN-шине, если диагностический разъем отсутствует или на него не выведены линии CAN, и если это не противоречит условиям гарантийного сервиса. Подключение осуществляется путем разборки части приборной панели, нахождения витой пары CAN и подключении к ней в соответствии со схемой, приведенной на Рисунке 7:

Рисунок 7. Схема прямого подключения терминала к CAN-шине

ВНИМАНИЕ! Данный вариант подключения используйте только в крайнем случае, рекомендуем воспользоваться бесконтактными считывателями.

Основным вариантом подключения к CAN-шине является подключение с использованием диагностического разъема OBD-II (внешний вид и назначение контактов представлены на Рис. 8).

Гнездо (сторона автомобиля)

N₽	Сигнал	N⁰	Сигнал
1	Опция изготовителя	9	Опция изготовителя
2	Шина J1850	10	Шина J1850
3	Опция изготовителя	11	Опция изготовителя
4	Общий (кузов)	12	Опция изготовителя
5	Общий (сигнал)	13	Опция изготовителя
6	CAN (J2234) Выс.	14	CAN (J2234) Низк.
7	ISO 9141-2 К-линия	15	ISO 9141-2 К-линия
8	Опция изготовителя	16	Питание аккум.

Рисунок 8. Схема диагностического разъема OBD-II

Перед подключением терминала к диагностическому разъему необходимо провести следующие действия:

- 1. для подключения используйте контакты 6 (CAN-H) и 14 (CAN-L);
- 2. лроверьте наличие напряжения на контактах относительно минуса источника питания на CAN-H напряжение должно быть 2,5-2,8 В, на CAN-L напряжение должно быть 2,1-2,3 В;
- при выключенной электронике TC проверьте сопротивление между контактами CAN_L и CAN_H, нормальным считается сопротивление около 60 Ом, при показаниях 120 Ом (в случае отсутствия законцовочного резистора) установите параллельно контактам резистор с сопротивлением 120 Ом.

Протоколы работы и варианты настройки терминала

Терминал позволяет получать данные из CAN-шины TC, если в ней поддерживаются протоколы:

- 1. J1939 (FMS). При работе по этому протоколу терминал не передает сообщения в CAN-шину, не вносит каких-либо изменений в работу автомобиля, в том числе не отсылает подтверждений на пакеты от узлов автомобиля.
- 2. J1979. Данный протокол работает по принципу «запрос-ответ», соответственно терминал посылает запросы в CAN-шину.

Все действия по настройке терминала для получения данных из CAN-шины производятся двумя способами:

1. на вкладке «Настройки» -> «CAN» Конфигуратора (Рис. 9)

Configurator 3.1.9 ALILEOSKY 0 Безопасность Передача данных Протокол Энергосбережение Трек Входы/выходы Цифровые входы Звук Сигнализация CAN Геозоны Устройство ость шины 250000 🔻 CAN отключ • ип фильтра 🖄 Диагностика 2000 🚖 [MC] ия в протоколе Смещение Значение аймаут Команды 🥥 Настройки 🔯 Данные 🍳 Маршруты iButton Новости 🔄 Открыть... 💾 Сохранить. Скай» — споне гаты «Акула Прослушать САN Тест OBD II

Инструкция. Подключение к CAN-шине

Рисунок 9. Настройка получения данных из САN шины в Конфигураторе

2. командой CanRegime

Формат команды	CanRegime Mode,BaudRate,TimeOut					
Параметры	Mode –режим работы:					
	0 – CAN-интерфейс выключен и не используется;					
	1 — сканер САМ-шины;					
	2 — стандартный фильтр FMS стандарта;					
	3 – фильтр пользователя 29 бит;					
	4 – фильтр пользователя 11 бит.					
	BaudRate – скорость шины данных. Должна совпадать со скоростью					
	данных в шине автомобиля. Может принимать значения от 10000 до					
	500000. Типовые значения: 62500, 125000, 250000, 500000.					
	TimeOut –измеряется в мс. Для режима J1939_SCANER это время					
	ожидания каждого сообщения. При слишком маленьком значении,					
	будут отловлены не все сообщения. Рекомендуемая величина для					
	J1939_SCANER – 2000мс. Для остальных режимов, это время, в течение					
	которого должно быть получено хотя бы одно сообщение, иначе					
	величина будет установлена в нуль.					
Пояснение	Общее управление шиной CAN.					
Пример	Пример включения сканера для шины, работающей на скорости 250000					
	бит/с, с периодом ожидания сообщения 2 секунды.					
	Запрос: CanRegime 1,250000,2000					
	Ответ: CANREG: Mode=1,BaudRate=250000,TimeOut=2000;					

Режимы работы

Терминал способен работать в нескольких режимах, позволяющих найти оптимальный способ получения информации из САN-шины TC:

1. Режим J1939_SCANER. Данный режим предназначен для получения CAN-сообщений, передаваемых по протоколу J1939. Поддерживаются скорости от 10000 бит/с до 500000 бит/с (типовые значения: 62500, 12500, 250000, 500000). Поддерживаются 11-и и 29-и битные идентификаторы.

Для работы в этом режиме в Конфигураторе на вкладке «Настройки» -> «CAN» выберите один из параметров скорости шины и время задержки (время ожидания сообщения); тип фильтра в данном случае не имеет значения (Рис. 10). Нажмите кнопку «Прослушать CAN». В случае успешной настройки в правой панели будут выводиться полученные данные.

Рисунок 10. Настройка сканирования из САN-шины в Конфигураторе

Режим сканирования осуществляется следующим образом:

- 1.1. выдаётся сообщение «CAN. Start scan.»;
- 1.2. начинают выводиться сообщения CAN-шины по возрастанию идентификаторов с установленной задержкой;

29 битные идентификаторы выводятся в следующем формате:

- ID=00000009 (8) 01 02 03 04 05 06 07 08, где ID 29ти битный идентификатор сообщения; (8) количество принятых байт из шины; 01 02 03 04 05 06 07 08 сообщение из восьми байт (слева младший байт, справа старший);
- 11 битные идентификаторы выводятся в виде:
 - ID=009 (8) 01 02 03 04 05 06 07 08, где ID 11ти битный идентификатор сообщения; (8) количество принятых байт из шины; 01 02 03 04 05 06 07 08 сообщение из восьми байт (слева младший байт, справа старший);
- 1.3. после того, как все идентификаторы были выданы, выводится сообщение «CAN. End scan.»
- Режим FMS стандартный фильтр протокола J1939. В случае, если производитель TC (в основном это производители большегрузной техники, сельхозоборудования) поддерживает стандарт FMS, выбор этого режима позволяет автоматически извлекать и расшифровывать сообщения, соответствующие стандарту FMS:
 - 2.1. общий расход топлива количество израсходованного топлива с момента создания ТС;
 - 2.2. уровень топлива в баке, измеряется в процентах. 0% пустой. 100% полный;

2.3. температура охлаждающей жидкости;

- 2.4. обороты двигателя;
- 2.5. общий пробег.

ВНИМАНИЕ! Многие автопроизводители поддерживают FMS частично, либо вообще его не поддерживают.

Для работы в этом режиме в Конфигураторе на вкладке «Настройки» -> «CAN» выберите тип фильтра «FMS» и скорость шины «250000» (Рис. 11). Нажмите кнопку «Применить». Второй вариант настройки: на вкладке «Команды» подайте команду *CanRegime* 2,250000,2000.

Безопасность	Передача данных	Протокол	Энергосбережение	Трек
Скорость шины	250000 👻			
Тип фильтра	FMS			•
Таймаут	2000 🚖 [мс]			

Рисунок 11. Настройка режима FMS в Конфигураторе

Убедитесь, что терминал получает данные от шины и выводит их во вкладку «Устройство» в Конфигураторе (Рис. 12);

CAN	
Общий расход топлива, л	1 431 655 765,0
Уровень топлива в баке, %	68,0
t охлаждающей жидкости, °С	130
Обороты двигателя, об/мин	5 461,250
Общий пробег, км	14 316 557,650

Рисунок 12. Результаты разбора данных из CAN-шины по стандарту FMS

Для отправки полученных данных на сервер мониторинга перейдите на вкладку «Настройки» -> «Протокол» Конфигуратора, настройте основной пакет на передачу данных по САN-шине на сервер (Рис. 13) и нажмите кнопку «Применить»;

Безопасность	Передача данных	Протокол	Энергосбережение		Трек	Входы/выход
Информация о	внутреннем архиве В	ш-память,	статический	архив, р	размер=4450 точ	
				Первый па	кет О	сновной пакет
CAN_A0: топли	во, израсходованное	с момента со	здания			V
CAN_A1: урове температура о» обороты двига	нь топлива, клаждающей жидкос теля					
CAN_B0: пробе	۲					V

Рисунок 13. Выбор параметров для отправки на сервер мониторинга

 Режимы J1939_USER_29bit и J1939_USER_11bit – конфигурируемые пользовательские фильтры, длина идентификатора 29бит или 11бит. Данные режимы позволяет получать из CAN-шины TC сообщения с 29-битными или 11-битными идентификаторами по протоколу J1939. Наличие передаваемых данных можно определить применением режима J1939_SCANER (Рис. 10). Как правило, данные режимы используются, если данных, получаемых по стандарту FMS недостаточно, либо стандарт FMS не поддерживается, но данные по протоколу J1939 в шине присутствуют. Настройте привязку получаемых данных к тэгам протокола GalileoSky (Рис. 14) в следующем порядке:

Безопасность	Передача данных	Протокол	Энергосбережение	Трек	Входы/выходы	Цифровые входы	Звук	Сигнализация	CAN Fe	2030ны
Скорость шины	500000 👻									
Тип фильтра	пользовательский ф	405TO 11939 11	-битные илентифика	горы 🔻					CAN. Itera	ation.
min quint pa			ormole riger rigerid	юры					ID=002 (8) 00 1F 70 0B 9A 00 00 00
Таймаут	2000 🚖 [мс]								ID=231 (8) B4020000000102762
	Ŧ								ID=232 (8) E5 25 10 27 61 0C 20 00
идентификато	р ізг	См	ещение	Значение	2 N				ID=235 (8	
сооощения	впротоколе								ID=252 (8) 7E 80 00 00 65 00 81 09
3B1	▼ CAN16BITR0 ▼	00 00 FB (00 02 05 00 00	1282					ID=253 (8) 8C 02 31 70 10 4A 3F 00
352			0 03 00 00 00	196608					ID=291 (8) 00 04 00 00 00 00 09 00
552		00 00 00	0 05 00 00 00	100000					ID=332 (8	0 00 FEFE 00 00 00 00 00 00 00 00
	•								ID=333 (8) 00 00 00 00 49 05 D0 0F
									ID=334 (8) 00 00 00 00 00 00 00 00 00
									ID=351 (8) 00 00 00 00 04 00 05 40
									ID=352 (8	000000000000000000000000000000000000000
									ID=391 (8	00 00 00 00 00 00 89 18 00
									ID=301 (8	
									10-432 (8) 81 29 EA 00 1E 56 E9 3E
									ID=451 (8	ED 00 66 73 23 00 10 00
									ID=452 (8	0 00 00 00 00 00 00 00 00 00
									ID=491 (8	53 54 40 80 00 B9 5D 06
									ID=4B1 (8) 0100010001060000
									ID=705 (8	9A 8C 8E AA 04 00 B1 02
									ID=706 (8) 8C 00 00 00 00 00 FE FD

Рисунок 14. Настройка режима пользовательский фильтр J1939

- 3.1. прослушайте сообщения CAN-шины, выполнив действия согласно описанию «Режима J1939_SCANER», приведенному выше;
- 3.2. выберите тип фильтра «Пользовательский фильтр J1939, 29 (или 11)-битные идентификаторы»;
- 3.3. узнайте у дилера или автопроизводителя какие данные в идентификаторах отвечают за работу того или иного узла в TC. Эти данные могут храниться в одном, двух или четырех байтах в идентификаторах;
- 3.4. установите соответствие между данными в идентификаторах и однобайтными, двухбайтными и четырёхбайтными тэгами протокола GalileoSky, т.е., если в интересующем идентификаторе из всех принятых данных нужен только один байт, то разумнее сопоставить однобайтный тэг. Из полезной информации, полученной по данному идентификатору, с помощью сдвига можно выбрать именно ту часть байтов, которые должны заполняться в содержимое тэга. Эти операции выполните следующим образом:
 - 3.3.1. в первой колонке таблицы укажите идентификатор;
 - 3.3.2. выберите соответствующий тэг;
 - 3.3.3. визуально, мышкой укажите смещение; в колонке «Значение» будет отображаться число, передаваемое на сервер.
- 3.5. нажмите кнопку «Применить».
- 3.6. для отправки полученных данных на сервер мониторинга перейдите на вкладку «Настройки» -> «Протокол» Конфигуратора, настройте основной пакет на передачу выбранных тэгов на сервер (Рис. 15) и нажмите кнопку «Применить»;

Безопасность Передача данн	ных Протокол	Энергосбережение	Трек і	Входы/выход		
Информация о внутреннем архиве Внутренняя флеш-память, статический архив, размер=4450 точ						
		Первый па	акет Осно	вной пакет		
CAN16BITR0 CAN-LOG. Нагрузка на ось 1						
CAN16BITR1 CAN-LOG. Нагрузка на ось 2						
CAN16BITR2 CAN-LOG. Нагрузка на ось 3						
CAN16BITR3 CAN-LOG. Нагрузка на ось 4						
CAN16BITR4 CAN-LOG. Нагрузка на ось 5						
CAN32BITR0 CAN-LOG. Полное время рабо	ты двигателя					

Рисунок 15. Выбор параметров для отправки на сервер мониторинга

ВНИМАНИЕ! Возможен вариант, когда диагностический разъем OBD-II подключен не к CANшине, а к одному из узлов, например к комбинации приборов (Рис. 5), и, как следствие, терминал не может прослушивать шину и получать идентификаторы. В этом случае примените команду ActiveCAN 1.

Формат команды ActiveCAN OnOff

Параметры	Параметры OnOff –режим работы:					
	0 — пассивный: в CAN-шину не посылаются подтверждения о приёме					
	пакетов. Это безопасный режим работы, не вносящий помех в бортовое					
	оборудование;					
	 активный: в САN-шину посылаются подтверждения о приёме пакетов. 					
Пояснение	Управление посылкой подтверждений о приёме пакетов в САN-шину.					
	Включение посылки подтверждений может потребоваться при					
	подключении к диагностическому разъёму, если не удалось считать					
	данные в пассивном режиме.					
Пример	Запрос: ActiveCAN 1					
	Ответ: ACTIVECAN:1;					

Применяйте данную команду только в вышеуказанной ситуации и с осторожностью, т.к. в этом режиме терминал эмулирует работу узлов автомобиля!

 Режим J1979_SCANER – вариант сканирования шины, предназначенный для определения скорости передачи данных и разрядности идентификаторов по протоколу J1979. Поддерживаются скорости 250000 бит/с и 500000 бит/с, 11-и и 29-и битные идентификаторы. Для запуска данного режима в Конфигураторе на вкладке «Настройки» -> «CAN» нажмите кнопку «Тест OBD II» (Рис. 16):

Рисунок 16. Выбор режима работы по протоколу J1979

Терминал посылает тестовую посылку. В случае поддержки протокола J1979 автоматически устанавливаются параметры «Скорость шины» и «Тип фильтра». В качестве последнего параметра могут фигурировать «OBD II, 29-битные идентификаторы» – стандартный фильтр протокола J1979 для 29-битных идентификаторов или «OBD II, 11-битные идентификаторы» – стандартный фильтр протокола J1979 для 11-битных идентификаторов. На вкладке «Устройство» отражаются автоматически извлеченные и расшифрованные сообщения, передаваемые по протоколу J1979 (Рис. 17):

- 4.1. уровень топлива в баке: измеряется в процентах. 0% пустой. 100% полный;
- 4.2. температура охлаждающей жидкости;
- 4.3. обороты двигателя;
- 4.4. коды ошибок.

CAN	
Общий расход топлива, л	0,0
Уровень топлива в баке, %	68,0
t охлаждающей жидкости, °С	130
Обороты двигателя, об/мин	5 461,250
Общий пробег, км	0,0

Рисунок 17. Результаты разбора данных из САN шины по протоколу J1979

ВНИМАНИЕ! Сканирование по протоколу J1979 и включение режимов «OBD II, 29битные идентификаторы» и «OBD II, 11-битные идентификаторы» может привести к неполадкам в работе бортового оборудования транспортного средства.

Для отправки полученных данных на сервер мониторинга перейдите на вкладку «Настройки» -> «Протокол» Конфигуратора, настройте основной пакет на передачу тэгов CAN_A1, CAN16BITR0-CAN16BITR4 на сервер (Рис. 18) и нажмите кнопку «Применить»;

Безопасность	Передача данных	Протокол	Энергосб	бережение Тре		к Входы/выход
Информация о	внутреннем архиве В	нутренняя фле	ш-память, о	статический	архи	в, размер=4450 точ
				Первый па	акет	Основной пакет
CAN16BITR0 CAN-LOG. Harp	рузка на ось 1					
CAN16BITR1 CAN-LOG. Harp	рузка на ось 2					
CAN16BITR2 CAN-LOG. Harp	рузка на ось З					
CAN16BITR3 CAN-LOG. Harp	рузка на ось 4					
CAN16BITR4 CAN-LOG. Harp	рузка на ось 5					

Рисунок 18. Выбор параметров для отправки на сервер мониторинга

Настройка мониторингового ПО

Подключение терминала к CAN-шине заканчивается проверкой правильности прохождения данных на сервер мониторинга (Рис.19):

OBDII	90		7a K1
20			
ConstreetMap contributors, CC-BY-SA			N 57° 59.1
can_a1=348158029, fuel_level=30.8, temp_aqua=8	0, taho=664, ran_b0=0, gps_mi	ileage=0, ibuttons=0, can	_r18=256, can_r19=6167, can_r20=
, can_a1=356547146, fuel_level=29.6, temp_aqua=8	2, taho=680, can_b0=0, gps_mi	leage=0, ibuttons=0, can	_r18=5889, can_r19=24, can_r20=0,
, can_a1=426801737, fuel_level=29,2, temp_aqua=8. (^{hr})	2, taho=814, <mark>c</mark> an_b0=0, gps_mi	ileage=0, ibuttons=0, can	_r18=5889, can_r19=24, can_r20=0,
, can_a1=369654601, fuel_level=29.2; temp_aqua=8; , can_a1=423656519, fuel_level=28.4, temp_aqua=8;	3, taho=705, dan_b0=0, gps_mi 4, taho=808, dan_b0=0, gps_mi	ileage=0, ibuttons=0, can ileage=0, ibuttons=0, can	_r18=5889, can_r19=24, can_r20=0. _r18=5889, can_r19=24, can_r20=0.
can_a1=378043463, fuel_level=28.4, temp_aqua=84, 10= 0, can_a1=430986882, fuel_level=26.4, temp_aqu	, taho=721, can_b0=0, gps_mile :a=05, tah o=822, can_b0=0, gps	eage=0, ibuttons=0, can_ s_mileage=0, ibuttons=0	r18=5889, can_r19=24, can_r20=0, c , can_r18=5889, can_r19=24, can_r2

Рисунок 19. Отражение показаний в программе сервера мониторинга

Подключение CAN-шины транспортного средства к терминалу GalileoSky завершено, терминал готов к работе.